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ABSTRACT 
How do children learn how to play hide and seek?  At age 3-4, 
children do not typically have perspective taking ability, so their 
hiding ability should be extremely limited.  We show through a 
case study that a 3 1/2 year old child can, in fact, play a credible 
game of hide and seek, even though she does not seem to have 
perspective taking ability.  We propose that children are able to 
learn how to play hide and seek by learning the features and 
relations of objects (e.g., containment, under) and use that 
information to play a credible game of hide and seek.  We model 
this hypothesis within the ACT-R cognitive architecture and put 
the model on a robot, which is able to mimic the child's hiding 
behavior.  We also take the “hiding” model and use it as the basis 
for a “seeking” model.  We suggest that using the same 
representations and procedures that a person uses allows better 
interaction between the human and robotic system.   
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1. INTRODUCTION 
There are, of course, many ways to build a computational system 
that behaves intelligently and works well with people. Our 
working hypothesis, the representational hypothesis, is that a 
system that uses representations and processes or algorithms 
similar to a person’s will be able to collaborate with a person 
better than a computational system that does not.  While we 
believe that our hypothesis is quite general, we will focus the 
majority of the paper on robotic systems.  There are, of course, 
many ways of interacting with robots (using a joystick or similar 
device is one of the most common), but in order to have full 
collaboration with an intelligent system, the person and 
computational system need to communicate with each other.  We 
focus on physical robots because we have a strong belief that a 
system that has sensors and effectors (e.g., embodied cognition) is 
a first step to achieving strong collaboration with a person.  We 
suggest three reasons for the representational hypothesis and then 
describe empirical and computational evidence in the domain of 
the children’s game hide and seek. 

First, since algorithms written for traditional real-time robotic 
systems have to be computationally efficient, they tend to use 
efficient mathematical representations such as matrices and polar 
coordinates, which may not be natural for people to use.  For 
example, most position and motion information in robotics is 
conveyed using position vectors and transformation and rotation 
matrices.  In general, people do not think or reason in this format.  
Instead, people seem to use a combination of spatial and 

propositional knowledge [3, 28].  Thus, in order to interact with 
the robot, the system must translate the robot's representation to a 
person's representation.  Because the person's representation of 
space is so complex [12, 25], this is not a trivial task.  
Additionally, a translator does not allow shared operations to 
occur between the person and the system; all operations must go 
through the translator, which may cause some loss of information, 
or confusion to either or both systems.  

Second, if a human is going to collaborate in shared space with a 
robot, the robot should not exhibit unexpected, unnatural or 
“martian” behaviors [22].  While the robot may be able to 
efficiently perform a task using, for example, a behavior-based 
approach, if the resulting behavior is perceived to be unnatural by 
the human, it will detract from the interaction.  Note that some 
researchers have suggested that there is a fine line between 
human-like and human, and in certain circumstances it has been 
hypothesized that very poor human-robot interaction can result 
[11, 19]. Therefore, we propose that some robot behaviors be 
created by modeling how humans perform such a task, and then 
using that model to drive the robots behavior.  

Third, and most important to this paper, is that we believe that 
some tasks for robots can best be programmed not by using more 
traditional control algorithms, but through an understanding of 
how humans solve the task, make inferences, and so on. So if, for 
example, we want to create a robot that can search for hidden 
snipers, it makes sense to encode knowledge about how humans 
hide.  We believe this can be best achieved with computational 
cognitive models. 

In this project, we seek to understand how children learn to play 
hide and seek, and thus create a robot that understands how to 
play hide and seek.  We have chosen hide and seek because it ties 
in well to several of our goals.  Hide and seek forces us to work in 
a complex, dynamic environment, it allows us to explore 
embodied cognition issues (i.e., spatial and temporal reasoning 
and allows us to explore methods of combining both cognitive and 
robotic/AI methods into a single system).  

For the remainder of the paper, we will describe the target robot, 
its sensors, navigational system, and how it communicates with 
people. Next, we describe the cognitive question we are 
investigating, describe a case study, and describe the 
computational cognitive model and how it operates on the robot.  
Finally, we will directly explore our hypothesis via computational 
means by examining how well the system can generalize to other 
tasks. 

2. Robot System 
This section describes the robot hardware and software.   
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2.1 Hardware  
The robot is a commercial Nomadic Technologies Nomad200 
suited to operation in interior environments.  It has a zero turn 
radius drive system, an array of range, image, and tactile sensors, 
and an onboard network of Linux and Windows computers with a 
wireless Ethernet link to the external computer network. 

2.2 Software 
A combination of non-cognitive methods (primarily for robot 
mobility and object recognition), cognitively-inspired interactions 
(primarily for communicating with a person), and computational 
cognitive models (primarily for the high-level thinking and 
reasoning) were used.  We have previously shown the utility of 
combining low-level reactive systems with cognitive models [9].   

2.2.1 Non-cognitive Methods: 
This project draws on the robot mobility capabilities of the 
previously developed WAX system [27], which includes 
components for map building, self localization, path planning, 
collision avoidance, and on-line map adaptation in changing 
environments.  The robot's lowest level of information comes 
from a dead-reckoning component that integrates motion over 
time to compute the robot's current location.  As the robot moves, 
it gathers range data from its 16 ultrasonic transducers and a laser-
based structured light rangefinder.  In a process developed by 
[18], the range data is interpreted using a sensor model that 
converts the raw range to a set of occupancy probabilities for the 
sensed area.  In this manner, data from multiple sensors can be 
fused into a single short-term occupancy map of the robot's 
vicinity, represented as a three dimensional array of discrete cells, 
each containing the probability that it is occupied or empty. 
All robots' odometry suffers from gradual drift, sometimes 
punctuated by larger errors from wheel slippage, rough ground, or 
collisions, so odometry alone is insufficient.  Using the process of 
continuous localization (CL) [26], a temporally overlapping 
progression of short-term maps is maintained.  At periodic 
intervals, the oldest short-term map, which has the most data, is 
registered against a long-term map of the larger environment 
(typically a room) to determine the correction needed to correct 
the odometric drift.  The long term map can be supplied a priori, 
or learned through a careful exploration as was done in [33].  For 
this work, mapping was not the focus so an a priori map was used.  
As a byproduct of correcting odometry, the long-term map can 
also be adapted to incorporate the now-corrected new readings 
from the short-term map.  Thus, as the robot moves, it not only 
maintains an accurate estimate of its position but also keeps the 
long-term map up to date with any changes to the environment. 
Because the robot's basic motor system is geometry-based and 
metric maps can be easily produced, it is a matter of practicality to 
state goal locations as points in Cartesian space.  These goals are 
passed to the Trulla path planner [13], which uses the long-term 
map to determine the best path to the goal.  For a given goal and 
map, planning begins at the goal and works outward.  Each 
neighboring map cell is assigned a vector pointing to a neighbor 
that has the least cost path to the goal so far.  This process is 
recursive, and all cells are visited.  When exhausted, each map 
cell contains a vector pointing in the direction of the least cost 
path to the goal, free of any local minima (though sometimes 
inadequacies in the conversion from occupancy probability to 
traversability by a non-point robot can result in non-traversable 
paths). 

Because there may have been changes to the environment that are 
beyond the robot's sensor range, or recent changes such as people 
walking near the robot, the paths made by Trulla cannot be 
followed blindly. Instead, they are passed as a single vector field 
to the Vector Field Histogram (VFH) process [6].  VFH uses the 
robot's current position to retrieve from the vector field the 
direction the robot should move to head toward the goal.  This 
vector is compared to an occupancy histogram built from the 
short-term map (which has the recent data close to the robot) and 
the robot is steered in the unblocked direction closest to that 
indicated by the vector.  In effect, Trulla handles the room-level 
navigation while VFH provides collision avoidance.  If the robot 
is blocked, VFH prevents collision, CL learns the changes and 
produces a new adapted long-term map, and Trulla replans around 
the obstruction. 
Rather than providing the robot with a priori information about 
discrete objects for it to hide behind, the robot was instead 
equipped with limited computer vision in order to detect some 
objects autonomously.  This also allows objects to be rearranged, 
added, or removed with the robot reacting accordingly.  The 
CMVision package [8] was used to provide simple color blob 
detection using a digital camera mounted on the robot. 
Objects are tagged with a special color marker that is more easily 
distinguished from the surroundings.  The marker color is the 
identifier for the characteristics of an object.  For example, all 
lime green objects are "chairs" and have the same characteristics. 
A table is supplied that maps marker color to the object's size, but 
all information on hidability is learned through feedback from 
playing the game and added to the table to be used in subsequent 
games.  The bearing to the object is then determined from its 
location in the camera image, and the range to it is obtained from 
a scanning laser rangefinder. 

2.2.2 Cognitively Inspired Methods: 
In order to communicate with a person, we use several methods 
that have some basis of human cognition.  The methods that are 
used here allow a user to communicate with the robot using 
spoken language, gestures to the robot, and gestures on a PDA. 
The human user can interact with the mobile robot, using natural 
language and gestures, which are part of our multimodal interface.  
The natural language component of the interface uses a 
commercial off-the-shelf speech recognition engine, ViaVoice, to 
analyze spoken utterances.  The speech signal is translated to a 
text string that is further analyzed by our in-house natural 
language understanding system, Nautilus, to produce a regularized 
expression.  This latter representation is linked, where necessary, 
to gesture information, and an appropriate robot action or 
response results.   
For example, the human user can tell the robot “Coyote, go hide 
and I’ll try to find you.”  The speech signal is analyzed into a text 
string which when parsed produces the following representation, 
simplified here for expository purposes. 
 (and (imperative (p-hide: hide) 
                  (system: you 

(name: coyote))) 
     (future (p-attempt: try) 
            (agent: I) 
             (action (p-find: find) 
     (agent: I) 
             (system: you 
                          (name: coyote))))) 



Basically, Nautilus parses the utterance into appropriate 
commands (e.g. the imperative structure in our example) and 
statements (e.g. the future declaration in our example), and the 
various verbs or predicates of the utterance (e.g. hide, try, and 
find) are mapped into corresponding semantic classes (p-hide, p-
attempt, and p-find) that have particular argument structures 
(agent, system) which result in a semantic interpretation of the 
utterance.  With gesture information, where appropriate, these 
representations are then sent to the robotic component whose 
modules translate these representations into appropriate actions.  

In the example above, no further gesture information is required 
to complete the command.  Coyote will, therefore, respond “I will 
go and hide,” in order to inform the user that it has understood the 
utterance, and the appropriate behavior based on the cognitive 
model for the hide-and-seek activity is invoked and appropriate 
robot action according to the model ensues. 

If, for example, a gesture is required to disambiguate the speech, 
as in “Coyote, hide somewhere over there,” then gesture 
information obtained from the laser rangefinder mounted on the 
top of the robot indicates the desired location, and this 
information is included in the interpreted utterance for further 
analysis by the robotic system.  

A more detailed analysis of how our multimodal interface 
processes both natural language and gestures, mapping them to 
appropriate robot actions and responses, is available elsewhere  
[21]. 

3. Hide and Seek 
We are exploring our representational hypothesis within the 
children's game hide and seek.  Hide and seek is a simple 
children's game where one child is "It," stays in one place to count 
to ten, and then goes to seek, or find, the other child or children.  
These issues address our high-level goals of understanding how 
humans represent and process spatial information, particularly as 
an aid in designing better human-robot interaction in collaborative 
spaces. Our specific goal in this study is to understand how 
children learn to play hide and seek and to use this knowledge to 
build a computational cognitive model to enable a robot to play 
hide and seek with near human level decision making (or 
competence).  Our cognitive model was written in ACT-R [3]. 

How do children learn how to play hide and seek?  Specifically, 
how do children learn how to hide?  Young children can play 
peek-a-boo at approximately 7 months of age [15] as they are just 
developing object permanence, shown to begin somewhere 
between five months [5, 7] and nine months [23] 
However, a "good" hider needs spatial perspective taking to be 
able to find the best hiding places.  For example, a good hider 
must take into account where "It" will come into a room, where 
"It" will search first, and where to hide behind an object from the 
perspective of "It" [e.g., 16].  A good hider also needs to know 
that just because the hider can't see "It" doesn't mean that "It" can't 
see the hider.  Finally, keeping an object (like a column) in 
between "It" and the hider is frequently a good hiding tactic.  All 
of these issues need some form of spatial perspective taking 
ability, or the ability to see the world from someone else's eyes. 

Children begin to develop very rudimentary spatial perspective-
taking ability around age four [14, 20, 32]. 

Previous researchers have studied perspective taking ability by 
examining children's egocentricism [e.g., 10] or spatial 

perspective taking [e.g., 20].  For example, a common 
methodology [based on 20] is to bring a child into the laboratory 
and show them a table that has four chairs with different objects 
or scenes visible from each chair (a desk, a window, etc.).  The 
child sits down at one of the chairs while the experimenter sits 
down at another chair.  The child is then asked to either describe 
or pick out from a set of pictures what the child sees (no 
perspective taking needed) and what the experimenter sees 
(spatial perspective taking needed). 

This line of research has shown that four year olds have 
rudimentary spatial perspective taking ability in this kind of 
situation:  67% of the time, four year olds made correct "near-far" 
perspective taking decisions [20, experiment 2].  However, four 
year olds did not seem to be able to differentiate "left-right" 
perspectives [20, experiment 2].  These experiments have been 
replicated and extended [e.g., 32]; the basic finding seems to be 
that four year olds have some very rudimentary spatial perspective 
taking ability, but it is nowhere close to a full understanding about 
how other people see the world differently (i.e., even the near-far 
accuracy, 67%, while better than chance could not be said to be 
"good" performance). 

Additionally, hide and seek seems to be rather more complicated 
than some of the simple tasks that have been explored in the 
psychological laboratory. Hide and seek typically occurs in a 
large-scale environment where the child can not see the entire area 
at once.  Also, "It" may come into a room where the child is 
hiding in different ways (i.e., from different doorways), and the 
hider needs to determine if an object is big enough to get inside of 
or hide behind.  Finally, there are many other things that are part 
of the game, including time pressure, the large number of 
available objects, and the large number of rooms or alternate 
locations. 

Thus, according to this analysis, children under four should not be 
able to play a credible game of hide and seek.  There doesn't seem 
to be any empirical investigations of the naturalistic game of hide 
and seek, but large amounts of anecdotal evidence (i.e., a casual 
examination of the game-playing behavior at local parks) suggests 
that even three year old children can certainly play a credible 
game of hide and seek.  If even four-year old children do not have 
a good model of spatial perspective taking, how do they learn to 
play hide and seek? 

Our hypothesis is that, since perspective taking is not learned well 
until later, a child before four or four and a half will not be able to 
use spatial perspective taking as a primary strategy in the hide and 
seek game.  In order to play the game, three and four year old 
children instead learn features and relations of objects [e.g., 29] 
that are pertinent for the hiding game.  For example, they need to 
learn that whether or not it is possible to see through an object is 
an important feature (opaque/transparency).  Likewise, they need 
to learn that size is an important feature (i.e., is an object big 
enough to get inside of). Thus, the relationship of different aspects 
of objects is the key.  One implication of this hypothesis is that 
hiding behind something will be a rare occurrence because hiding 
behind something requires some perspective taking ability.  If 
hiding behind an object does occur, it will probably occur only in 
a very familiar environment. 

In order to investigate this object-relationship hypothesis, we 
collected data from a single child at two different ages, 3 ½ and 5 
½.  When the child was 3 ½, she was just learning to play hide 
and seek; at 5 ½, she knew how to play hide and seek and 



presumably had some perspective-taking ability. We then built a 
computational cognitive model of the hiding behavior seen by the 
3 ½ child in the case study. We put this model on our mobile 
robot to see of we could get reasonable human-level decision 
making.   Finally, we show support for our representational 
hypothesis by reusing our hiding model as the basis for a seeking 
model. 

4. Case Study 
4.1 Participant 
The child used in the case study is the daughter of one of the 
authors of the paper.  At 3 1/2, the child, E, did not know how to 
play hide and seek and needed the rules to be explained to her.  At 
5 ½, E did know how to play hide and seek and had played it 
many times with friends and parents. 

4.2 Task and materials (age: 3 ½) 
Fifteen games of hide and seek were played over a 4 hour period, 
with one break.  Four games were played first, then a break 
occurred, and then the final eleven games were played later in the 
day.  "It" counted to ten while E hid.  The game occurred inside 
E's house, and E could hide anywhere in the house.  E was, of 
course, very familiar with the house.  "It" had a video camera on 
the entire time a hide and seek game was played, recording the 
interactions between "It" and E as well as the final hiding places 
that E chose.  In one game (not included in the fifteen above), the 
roles were switched:  E was "It" and "It" hid. 

Over the following few days, the spatial perspective-taking of E 
was examined by asking her to name her own left and right hands 
and other people's left and right hands.  When asked to name other 
people's left and right hands, the other person was either sitting in 
the same direction as E or facing E. 

4.3 Task and materials (age: 5 ½) 
Ten games of hide and seek were played over an hour period.  The 
same location (her house) was used.  “It” again video-taped all 
interactions and hiding places.  E was very familiar with the house 
in a spatial sense (e.g., she knew where all the rooms were, and 
the objects in the rooms), but she had no experience searching for 
animate objects (e.g., pets) that had hidden before. 

4.4 Design and Procedure 
"It" searched for E after "It" had counted to ten.  In one case 
(described below), "It" provided E with a vague hint.  In all other 
cases, "It" gave E some sort of feedback, ranging from "That's a 
better hiding place!" (positive feedback) to "I can still see you!" 
(slightly negative feedback). 

4.5 Measures 
All verbal utterances were transcribed and all but the first two 
hiding places were coded according to the type of hiding place it 
was.  The first two games are described later.  The specific codes 
we used were Under (E hid directly under an object), Containment 
(E hid inside of another object), and behind (E hid behind an 
object from any perspective).   

4.6 Caveats to the case study 
The results of this case study should be taken with care.  The 
nature of case studies is that there is only one participant or 
observation, and it is difficult to determine how generalizable the 
results are based on one study.  This study may be even more 
susceptible to that concern because the child chosen for the case 

study was one of the authors’ children (following Piaget [23, 24]) 
and in a familiar environment. 

However, it is possible to perform an in-depth analysis of one 
participant that is sometimes more difficult or impossible to do in 
more traditional experimental settings.  The focus in this study 
was on modeling the individual behavior at a fine grain level to 
lead to generalizations that could be tested computationally and 
empirically. A similar methodology has been used by many 
researchers in cognitive science [e.g., 4, 17, 31].  

4.7 Results and Discussion (age 3 ½) 
At age 3 ½, E clearly did not have full perspective taking ability: 
she could correctly identify her own left and right hand, and 
anyone else's left and right hands if they were sitting in the same 
orientation.  However, if E was asked to name a person's left or 
right hand while facing that person, she was less than 50% 
accurate, showing an egocentric bias.   

If our object-relationship hypothesis is correct, we would expect 
to observe very few (if any) instances of E hiding behind objects 
at age 3 ½ .  Instead, we would expect to observe a predominance 
of hiding under objects and inside of objects or rooms 
(containment).  As Table 1 shows, we found strong support for 
our hypothesis. 

The majority of places that E hid in were either containment (i.e., 
hiding inside a room) or under an object, or both (80%), though 
there was one instance where E hid behind a door (7%), one 
instance of hiding her eyes while out in the open (7%), and one 
instance of hiding out in the open (7%).  Clearly, E was not using 
perspective taking skills to hide behind objects frequently, 
χ2(2)=24.2, p < .001, bonferonni adjusted χ2, p < .01. 

For game #1, E went into a different room and closed her eyes, 
presumably thinking "If I can't see you, you can't see me." For 
game #2, E peeked at "It" around a corner as the counting was 
completed.   

After game #2, "It" thought that E was stuck in a local minima, so 
he gave her a suggestion, "You might not want to hide in the 
open." This suggestion gave E a chance to think about the game a 
moment and come up with a new representation of the game of 
hide and seek. Immediately after this suggestion, E was able to 
dramatically improve her hiding behavior:  she hid underneath a 
grand piano.  She was still immediately visible when "It" came 
into the room, but she was doing more than simply hiding her 
eyes, and she was clearly not hiding out in the open.  

For the next several games, E hid under things and inside of 
rooms. At game #9, she hid in what was probably the best hiding 
place of the entire day: underneath an upholstered chair.  In this 
case, she was completely hidden from view from all angles in the 
room.  

For the last few games, E explored other places, focusing 
primarily on hiding under things or inside of things.  Note that 
some of the hiding places E used were ambiguous:  hiding under 
bedcovers could be either a containment location (surrounded on 
all sides by the covers or an under location (underneath the 
covers).  Additionally, the only "behind" location was squeezed in 
between a closed door and the wall.  This could be either a behind 
location or a containment location. 
 
 



Game 
Number 

Hiding Location Hiding Type 

1 eyes-closed can't see me if I can't see 
you 

2 out-in-open understanding rules of 
game 

suggestion don't hide out in the 
open 

 

3 under piano  Under 

4 in laundry room Containment (room) 

break   

5 under piano Under 

6 in laundry room Containment (room) 

7 in bathroom Containment (room) 

8 in her room Containment (room) 

9 under chair Under 

10 behind bedroom 
door 

Containment or behind 

11 under chair Under 

12 under covers Under or containment 

13 under covers Under or containment 

14 in bathroom Containment 

15 under glass coffee 
table 

Under 

Table 1:  Summary of where E hid at age 3 ½.   
Several comments should be made about E's hiding places.  First, 
it should be noted that E did not hide in the same room as "It" a 
single time.  Second, for the first game (E hiding her eyes so she 
could not see “It”, presumably thinking “If I can’t see you, you 
can’t see me”) is strong evidence for E not having a well 
developed sense of spatial perspective taking.  At this stage E did 
not completely understand the rules of the game, but she did 
understand that “It” should not be able to find her easily.  If E had 
a well developed sense of spatial perspective taking, she would 
not ever have simply covered her eyes.  Further, E chose the same 
hiding place multiple times.  For example, five locations were 
used twice (under the piano, in the laundry room, in the bathroom, 
under the covers, under the chair). Also, after game #5, her hiding 
behavior gets markedly better --- in nine of the ten games after #5, 
she can't be easily seen.  Finally, it appears that E understands at 
about game #4 that it is good to hide under things or within things 
(like small rooms).  However, as game #15 shows, she does not 
yet understand that opacity is also a critical feature in this domain. 

These kinds of hiding places strongly suggest that E is developing 
knowledge about objects and relations to objects in order to hide:  
she is probably not using spatial perspective taking in order to 
hide.   E did not have spatial perspective taking ability measured 
by her ability to tell someone else’s left or right hands in an 
orientation different from her own.  She did not hide in places that 
would have shown spatial perspective taking (e.g., behind 
objects).  However, her hiding places were quite good, especially 
after she had played several games.  Can this type of hiding 

behavior be modeled without spatial perspective taking?  The next 
section examined this issue directly. 

4.8 Results and Discussion (age 5 ½) 
At age 5 ½, E no longer had an egocentric bias; she was able to 
accurately identify both her and others’ left and right hands in 
different orientations. 

Her hiding behavior was also markedly different.  As Table 2 
shows, in 7 out of 10 cases, she hid behind an object, sometimes 
moving to keep the object between herself and “It.”  This pattern 
of results is statistically different from her hiding behavior at age 
3 ½, χ2(1)=51.5, p < .001.  E’s hiding behavior at 5 ½ shows 
several things.  First, E seems to have developed some spatial 
perspective taking ability. Second, it is clear that the environment 
itself did not necessarily offer more opportunities for hiding under 
or inside of other objects, since in the same environment, E did 
hide behind objects once she had developed some perspective 
taking ability. Third, her perspective-taking improved her hiding. 

Game 
Number 

Hiding Location Hiding Type 

1 Behind stuffed 
animals 

Behind 

2 Behind boxes Behind 

3 Inside her closet Containment (room) 

4 Behind a table 
(moving to keep away 
from It’s view) 

Behind 

5 Underneath a chair Under 

6 Behind a chair Behind 

7 Behind a bassinett Behind 

8 Under a table Under 

9 Behind a chair 
(moving to keep away 
from It’s view) 

Behind  

10 Behind bedroom door Containment or behind 

Table 2:  Summary of where E hid at age 5 ½.   
The remainder of the paper will focus on how E learned how to 
play hide and seek (e.g., E at age 3 ½).  Elsewhere, we have 
incorporated spatial perspective-taking into our robotic system 
[30]; this paper is concerned primarily with how a robot could 
learn how to play hide and seek. 

4.9  ACT-R Model 
This is a very challenging task to model in a psychologically 
plausible manner for several reasons.  First, the learning that 
occurs happens very quickly and in very few trials. Second, there 
is a time limit to what kinds of hiding places can be found --- 
approximately 10 seconds to find a place and make the physical 
movements to the hiding place.  Third, the model must be able to 
accept a suggestion and reason about that suggestion to change its 
behavior (i.e., get out of a local minima).  Fourth, the model must 
be able to take positive or negative feedback and use that 
feedback to change its behavior.  There is, in short, an enormous 
amount of learning that occurs in these 15 games with only one 
suggestion to the system. 



We modeled this task in ACT-R [3].  The ACT family of theories 
has a long history of integrating and organizing psychological 
data. The current version, ACT-R, derives important constraints 
from asking what cognitive processes are adaptive given the 
statistical structure of the environment [2]. It has also been 
broadly tested in psychological and computational terms. 
In order to learn and improve within hide and seek, several types 
of learning were used, including learning new knowledge 
structures (chunks) and schematic / ontological knowledge (links 
between these chunks), tuning of production rules, and a scaled 
down form of explanation based learning.  Our model focuses 
primarily on the first few games, up to the point where E 
successfully uses knowledge of containment and under to find 
good hiding places.  Our model successfully reasons with a 
suggestion provided to it. 

The model begins every game by "examining" the environment.  
In the pure model (i.e., without the robot sensors), the model has 
environmental chunks that it can "see."1  It starts off with a few 
specific hiding productions (based primarily on "peek a boo"), a 
few general reasoning productions, and a fair number of chunks 
and knowledge about the physical world.  It also has some 
declarative knowledge about space -- knowledge about what 
"under" and "inside" means. 

The model begins with very little a priori knowledge about how to 
hide.  When asked to play hide and seek the first few times, the 
only strategy it has that is applicable is to close its eyes.  Like E, 
the model is stuck in a local minima.  In order to get out of the 
local minima, it needs some sort of suggestion or additional 
information.  Again, like E, the model is told, "Don't hide out in 
the open."  The model then reasons about what "open" means by 
examining the environment and reasoning explicitly about those 
objects. Specifically, it focuses its attention on an object (like a 
chair) and marks certain object-locations as "not-out-in-the-open."  
At the beginning of a model run, it believes that "under," "inside," 
and "on-top-of" are not-out-in-the-open.  The model is then able 
to use that information (in competition with other hiding 
productions, like "hide-eyes") to find better hiding places the next 
time it is asked to play hide and seek. 

Thus, the next time the model is asked to play hide and seek, it 
examines the environment and chooses at random a location that 
is "not out in the open", finds an appropriate object, and goes 
there. For example, the model is able to hide "under" a "piano," 
just like E did in game #3.  In the current version, we provide the 
model with feedback (positive or negative) on every trial.  In this 
case, the feedback would be negative, and the model would try a 
different location.  Over several games (1-4), it is able to 
determine that some locations are better than others --- hiding 
inside of something is better than hiding on top of something.  
Within 4 games, the model is able to hide in reasonably good 
hiding places.  At this point in time however, it does not know 
anything about transparency or opacity --- it is perfectly happy to 
hide under a clear glass coffee table, just as E did in game #15.  
Note also that the model performs much of its behavior 
                                                                    
1 It should be noted that ACT-R does has a mechanism for seeing 

the world.  However, since the model needed to be able to 
transition to a robot with different sensor types (e.g., sonar), the 
model used environmental chunks rather than visual PM 
chunks.  This simplification allowed the pure model form to 
solve the hide and seek problem rather than the vision problem. 

asynchronously:  It inspects the environment, makes a decision, 
then hides.  This is probably a simplification of what E actually 
did; E probably did a combination of a priori planning and 
moving while thinking in order to opportunistically find an 
appropriate hiding place.  It was implemented in this manner so 
that it could interact seamlessly with other systems (e.g., the robot 
described below). 

There are several interesting situations that arise in the model.  As 
was noted earlier, E hid in the same place several times.  The 
model shows the same pattern.  The reason this seems to happen 
in the model is that when the model is "searching" for applicable 
objects, it is more likely to retrieve an object that has already been 
used because it has a higher base-level activation: it is more active 
or "hotter" in memory.  We do not believe that the perceptual 
system works the same way that memory does, but after objects 
have been perceived, these objects may be subject to changes in 
activation even if they are in plain view. Thus, some objects and 
locations could become "favorite" hiding places simply because of 
the increase in activation.  Because there is noise in the cognitive 
system, sometimes an object/location will be chosen multiple 
times and sometimes a different object/location will be chosen.  
This noise is one of the ways that ACT-R does not get stuck 
perseverating on the same objects and locations [1]. 

Additionally, the model is able to imitate E's hiding behavior quite 
well.  Because there is randomness in the model, the initial 
performance of the model does not fit perfectly:  the model may 
learn faster or slower than E did.  However, with some guiding or 
model tracing of the model, it is able to perfectly match E's 
qualitative hiding behavior. 

Finally, each time the model is asked to hide, it is able to find a 
hiding location within 2 to 6 seconds of ACT-R simulated time.  
Thus, there is approximately four to eight seconds to actually 
move to the hiding place.  The model is therefore able to find a 
hiding place within the 10-second time limit set by the game. 

4.10 Robot Behavior:  Hiding 
Our next task was to put our model on the robot.  In order to have 
an integrated model, we needed the robot to perceive the world 
(via the CMVision system), give that information to the ACT-R 
model, allow the model to reason about the game and decide on a 
hiding place, have the robot go to the desired location, and then 
receive feedback (verbally). 

At the beginning of a game, ACT-R sends a request to look for 
objects. The robot turns to look at the entire room, building a list 
of all of the recognized objects.  Duplicate observations are 
removed based on object type and location, and the list is returned 
to the model.  ACT-R uses its cognitive model with the object list 
to determine where it wants to hide.  This hiding place is sent to 
the Wax system using the object record from the list and a relative 
location (e.g., under).  The Wax system then uses simple 
geometry to apply the relative location to the object's observed 
position, from the robot's current viewpoint, using the object's a 
priori physical size.  The resulting Cartesian coordinates of the 
hiding location are then sent to the Trulla algorithm and the robot 
navigates to specific coordinates. 

ACT-R is informed upon arrival at the hiding place and then asks 
the user for feedback on how well it hid.  The user replies with 
natural speech one of a set of utterances that provide feedback on 
the quality of the hiding place and optionally, suggestions for the 
next time, such as "that object is too small to hide under".  The 



speech is processed by the Nautilus speech understanding system, 
and the resulting encoded meaning sent to the ACT-R model.  The 
cognitive model is updated to improve its decision-making and 
ACT-R tells the robot to go back to its starting position in 
preparation for the next game. 

Parts of the interaction and robot behavior had to be changed from 
E’s – for example, it is impossible for a robot to cover its eyes 
since it has no hands.  When the robot wants to hide its “eyes” we 
simply have the robot turn 180 degrees from “It” (see Figure 2).   

 
Figure 2:  The robot turning 180 degrees to “close” its eyes. 

5. Model and Robot behavior:  Seeking 

So far, we have shown a computational cognitive model that 
allows a mobile robot to hide in the same manner that a 3 1/2 year 
old child does.  Our current system shows strong support for our 
object-relationship hypothesis about how children learn to play 
hide and seek, but we have not yet shown strong evidence for our 
representational hypothesis:  that building a system that uses 
representations and processes similar to a person’s will exhibit 
more natural behaviors.  If this hypothesis is correct, we would 
expect to be able to use our existing system hiding system to seek 
for a person.  The seeking system should exhibit several 
interesting behaviors.  First, it should seek according to its own 
model of hiding.  That is, it should search in places that it thinks 
are plausible for it to hide in.2 Second, it should be able to deal 
with novel objects or objects that were not in its original 
environment.  Third, it should be able to accomplish this seeking 
behavior without new learning mechanisms while using its current 
representations and algorithms. This seeking behavior would be 
strong evidence for our representational hypothesis:  a system 
learning to hide and then using that information to search in 
places that would be “natural” for it to hide in.   

In order to explore how our existing system would seek for a 
person after it had learned how to hide, we went through several 
straightforward steps.  First, we ran the model as above, allowing 
it to learn different pertinent features of objects and object-
relations.  We then “froze” the model.  In order to allow it to seek, 
we gave it two more pieces of information:  (1) what a person 
“looked like” (e.g., the person would wear a blue shirt which was 
identifiable by CMVision) and (2) how to start the game (e.g., a 
location to start from; what to count to, etc.).  In order to seek for 
a person, the computational cognitive model determined where it 
would hide and then gave those coordinates for the robot to look 
there.  If it did not find the person in that location, it searched in 
                                                                    
2 Clearly, our robot can not bend or change shape like a young 

child.  As a simplification for both the model and the robot, we 
assume that the hider is small (approximately child size) and 
does not contort itself a great deal or squeeze itself into a 
location that is rather smaller than itself. 

the next place that it would hide until either it had found the 
person or it had run out of locations to search.  We did not clear 
the model’s “individual preferences” (e.g., locations that had 
higher or lower levels of activation); the model would search 
those locations in approximate (because of noise) order of 
activation.  We also changed the environment slightly (i.e., added 
additional objects it already knew about, moved the location of 
other objects, etc.). 

Both the model and robot behaved as expected.  The robot 
systematically searched different locations that it had learned were 
acceptable hiding places until it found the person hiding.  Over 
multiple games, it searched locations in different orders.  
Importantly, it did not attempt to search for a person in locations 
that would have been very “odd.”  For example, while it could 
have found a person hiding out in the open, it did not 
systematically search all the open space for a person hiding out in 
the open.  Instead, it searched where the robot would have hidden.  
A full set of movies of the robot hiding and seeking can be found 
at http://www.nrl.navy.mil/aic/iss/aas/HideandSeek.php. 

6. Conclusions 
This paper suggested two different hypotheses, a specific object-
relationship hypothesis dealing with how children learn to play 
hide and seek, and the second representational hypothesis dealing 
with the types of representations and algorithms or procedures 
that should be used for intelligent systems.  Both hypotheses were 
supported.  The object-relationship hypothesis was that children 
learn how to play a credible game of hide and seek not by using 
spatial perspective taking but by learning the features and 
relations of objects (e.g., hiding inside of something is usually a 
good hiding place).  This hypothesis was supported by both 
empirical and computational evidence.  The case study of E 
showed that a 3 1/2 year old child who did not have perspective-
taking skills was able to learn how to play a credible game of hide 
and seek.  She did this primarily by learning to hide inside and 
under different objects.  Importantly, she exhibited almost no 
spatial perspective taking in her hiding behavior.  We also 
supported our object-relationship hypothesis by building a 
computational cognitive model in ACT-R. Our cognitive model 
matches E’s hiding behavior at a qualitative level and makes the 
same type of errors that E made.  Clearly, there is a limit to what 
can be learned using this type of hiding behavior – hiding behind 
things can not be done, locations are used multiple times, etc.  The 
learning mechanisms we used in our model are quite general and 
used in other cognitive models, so we did not need to invent any 
new learning methods.  Finally, we put our model on a physical 
robot to embody the computational model. 
We also proposed and supported a representational-level 
hypothesis.  Our hypothesis was that building a computational or 
robotic system that uses representations and processes similar to a 
person’s will be able to work very well with a person because less 
conversion will be needed to translate between different 
representations.  We supported this hypothesis by taking the 
“hiding” model and applied it to seeking.  The model successfully 
searched for a person using the same representations and 
processes that it had learned and used while learning how to hide. 
Clearly, our approach could lead the system to make systematic 
errors:  it would not expect a person to hide on the ceiling or 
search for very small people, etc.  It would not use perspective 
taking for seeking or even assume that the hider would move 
locations.  



Integrating a computational cognitive model with a robotic system 
gave us several advantages.  First, our system allowed the 
cognitive model to do the “thinking and reasoning” aspects of the 
task and the robot’s low-level mobility code to do the navigation 
and wayfinding.  This separation between high (cognitive model) 
and low (mobility) code seems like a natural dividing point for 
what computational cognitive models are good at (thinking, 
reasoning, problem solving, etc.) and what more engineering 
models are good at (low level perceptual issues, navigation, 
search, etc.). Finally, by putting our cognitive model on our robot, 
we have made a large step to embodied cognition. 
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